Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a
D1159: Probability space such that
Then $\{ X_j \}_{j \in J}$ is a
conditionally independent random collection on $P$
given $\mathcal{G}$ if and only if
\begin{equation}
\forall \, N \in \{ 1, 2, 3, \ldots \} :
\forall \, j_1, \, \ldots, \, j_N \in J
\left[ \{ X_{j_1} \in E_{j_1} \}, \, \ldots, \, \{ X_{j_N} \in E_{j_N} \} \in \mathcal{F} \quad \implies \quad \mathbb{P} \left( \bigcap_{n = 1}^N \{ X_{j_n} \in E_{j_n} \} \mid \mathcal{G} \right) \overset{a.s.}{=} \prod_{n = 1}^N \mathbb{P}( X_{j_n} \in E_{j_n} \mid \mathcal{G}) \right]
\end{equation}