Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Collection of sets
▾
Set union
▾
Successor set
▾
Inductive set
▾
Set of inductive sets
▾
Set of natural numbers
▾
Set of integers
▾
Set of rademacher integers
▾
Rademacher integer
▾
Rademacher random integer
▾
Standard rademacher random integer
▾
Standard gaussian random real number
▾
Gaussian random real number
▾
Student's random real number
Standard Cauchy random real number
Formulation 0
Let $X \in \text{Student}(1)$ be a
D4861: Student's random real number
.
A
D3161: Random real number
$C \in \text{Random}(\mathbb{R})$ is a
standard Cauchy random real number
if and only if \begin{equation} C \overset{d}{=} X \end{equation}